Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37779364

RESUMO

OBJECTIVE: Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD. METHODS: By means of label-free mass spectrometry (MS) and mRNA sequencing (mRNA-seq), we report pre-symptomatic changes in the cortices of TDP-43 and FUS mutant mouse models. Using tissues from transgenic mouse models of mitochondrial diseases as a reference, we performed comparative analyses and extracted unique and common mitochondrial signatures that revealed neuroprotective compensatory mechanisms in response to early damage. RESULTS: In this regard, upregulation of both Acyl-CoA Synthetase Long-Chain Family Member 3 (ACSL3) and mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) were the most representative change in pre-symptomatic ALS/FTD tissues, suggesting that fatty acid beta-oxidation and mitochondrial protein translation are mechanisms of adaptation in response to ALS/FTD pathology. CONCLUSIONS: Together, our unbiased integrative analyses unveil novel molecular components that may influence mitochondrial homeostasis in the earliest phase of ALS.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doenças Mitocondriais , Doenças Neurodegenerativas , Doença de Pick , Camundongos , Animais , Humanos , Demência Frontotemporal/metabolismo , Esclerose Amiotrófica Lateral/patologia , Proteômica , Camundongos Transgênicos , Perfilação da Expressão Gênica , RNA Mensageiro
2.
Cell Death Dis ; 14(10): 705, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898609

RESUMO

Medulloblastoma is the most common malignant paediatric brain tumour, representing 20% of all paediatric intercranial tumours. Current aggressive treatment protocols and the use of radiation therapy in particular are associated with high levels of toxicity and significant adverse effects, and long-term sequelae can be severe. Therefore, improving chemotherapy efficacy could reduce the current reliance on radiation therapy. Here, we demonstrated that systems-level analysis of basal apoptosis protein expression and their signalling interactions can differentiate between medulloblastoma cell lines that undergo apoptosis in response to chemotherapy, and those that do not. Combining computational predictions with experimental BH3 profiling, we identified a therapeutically-exploitable dependence of medulloblastoma cells on BCL-XL, and experimentally validated that BCL-XL targeting, and not targeting of BCL-2 or MCL-1, can potentiate cisplatin-induced cytotoxicity in medulloblastoma cell lines with low sensitivity to cisplatin treatment. Finally, we identified MCL-1 as an anti-apoptotic mediator whose targeting is required for BCL-XL inhibitor-induced apoptosis. Collectively, our study identifies that BCL-XL and MCL-1 are the key anti-apoptotic proteins in medulloblastoma, which mediate distinct protective roles. While BCL-XL has a first-line role in protecting cells from apoptosis basally, MCL-1 represents a second line of defence that compensates for BCL-XL upon its inhibition. We provide rationale for the further evaluation of BCL-XL and MCL-1 inhibitors in the treatment of medulloblastoma, and together with current efforts to improve the cancer-specificity of BCL-2 family inhibitors, these novel treatment strategies have the potential to improve the future clinical management of medulloblastoma.


Assuntos
Antineoplásicos , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Proteínas Reguladoras de Apoptose/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Cisplatino/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Linhagem Celular Tumoral
3.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463203

RESUMO

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Canais de Sódio Disparados por Voltagem , Humanos , Camundongos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética
4.
Cell Death Dis ; 13(5): 460, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568716

RESUMO

New, more effective therapeutics are required for the treatment of paediatric cancers. Current treatment protocols of cytotoxic treatments including chemotherapy trigger cancer-cell death by engaging the apoptosis pathway, and chemotherapy efficacy is frequently impeded by apoptosis dysregulation. Apoptosis dysregulation, through genetic or epigenetic mechanisms, is a feature of many cancer types, and contributes to reduced treatment response, disease progression and ultimately treatment resistance. Novel approaches are required to overcome dysregulated apoptosis signalling, increase the efficacy of cancer treatment and improve patient outcomes. Here, we provide an insight into current knowledge of how the apoptosis pathway is dysregulated in paediatric nervous system tumours, with a focus on TRAIL receptors, the BCL-2 proteins and the IAP family, and highlight preclinical evidence demonstrating that pharmacological manipulation of the apoptosis pathway can restore apoptosis signalling and sensitise cancer cells to treatment. Finally, we discuss the potential clinical implications of these findings.


Assuntos
Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Criança , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Sistema Nervoso/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
5.
Am J Physiol Cell Physiol ; 323(1): C69-C83, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35613354

RESUMO

Reactive oxygen species (ROS) are recognized both as damaging molecules and intracellular signaling entities. In addition to its role in ATP generation, the mitochondrial electron transport chain (ETC) constitutes a relevant source of mitochondrial ROS, in particular during pathological conditions. Mitochondrial ROS homeostasis depends on species- and site-dependent ROS production, their bioreactivity, diffusion, and scavenging. However, our quantitative understanding of mitochondrial ROS homeostasis has thus far been hampered by technical limitations, including a lack of truly site- and/or ROS-specific reporter molecules. In this context, the use of computational models is of great value to complement and interpret empirical data, as well as to predict variables that are difficult to assess experimentally. During the past decades, various mechanistic models of ETC-mediated ROS production have been developed. Although these often-complex models have generated novel insights, their parameterization, analysis, and integration with other computational models are not straightforward. In contrast, phenomenological (sometimes termed "minimal") models use a relatively small set of equations to describe empirical relationship(s) between ROS-related and other parameters and generally aim to explore system behavior and generate hypotheses for experimental validation. In this review, we first discuss ETC-linked ROS homeostasis and introduce various detailed mechanistic models. Next, we present how bioenergetic parameters (e.g., NADH/NAD+ ratio and mitochondrial membrane potential) relate to site-specific ROS production within the ETC and how these relationships can be used to design minimal models of ROS homeostasis. Finally, we illustrate how minimal models have been applied to explore pathophysiological aspects of ROS.


Assuntos
Complexo I de Transporte de Elétrons , Mitocôndrias , Transporte de Elétrons/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
J Neurochem ; 159(4): 710-728, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33694332

RESUMO

Progressive neuronal injury following ischaemic stroke is associated with glutamate-induced depolarization, energetic stress and activation of AMP-activated protein kinase (AMPK). We here identify a molecular signature associated with neuronal AMPK activation, as a critical regulator of cellular response to energetic stress following ischaemia. We report a robust induction of microRNA miR-210-3p both in vitro in primary cortical neurons in response to acute AMPK activation and following ischaemic stroke in vivo. Bioinformatics and reverse phase protein array analysis of neuronal protein expression changes in vivo following administration of a miR-210-3p mimic revealed altered expression of phosphatase and tensin homolog (PTEN), 3-phosphoinositide-dependent protein kinase 1 (PDK1), ribosomal protein S6 kinase (p70S6K) and ribosomal protein S6 (RPS6) signalling in response to increasing miR-210-3p. In vivo, we observed a corresponding reduction in p70S6K activity following ischaemic stroke. Utilizing models of glutamate receptor over-activation in primary neurons, we demonstrated that induction of miR-210-3p was accompanied by sustained suppression of p70S6K activity and that this effect was reversed by miR-210-3p inhibition. Collectively, these results provide new molecular insight into the regulation of cell signalling during ischaemic injury, and suggest a novel mechanism whereby AMPK regulates miR-210-3p to control p70S6K activity in ischaemic stroke and excitotoxic injury.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , AVC Isquêmico/patologia , MicroRNAs/genética , Neurônios/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Animais , Córtex Cerebral/patologia , Biologia Computacional , Ativação Enzimática , Feminino , Masculino , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase , Cultura Primária de Células , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais
7.
BMC Biol ; 19(1): 57, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761951

RESUMO

BACKGROUND: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Luteolina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Retículo Endoplasmático/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Transdução de Sinais
8.
Mol Ther ; 29(6): 2041-2052, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33609732

RESUMO

Oligonucleotide therapies offer precision treatments for a variety of neurological diseases, including epilepsy, but their deployment is hampered by the blood-brain barrier (BBB). Previous studies showed that intracerebroventricular injection of an antisense oligonucleotide (antagomir) targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in animal models of epilepsy. In this study, we used assays of serum protein and tracer extravasation to determine that BBB disruption occurring after status epilepticus in mice was sufficient to permit passage of systemically injected Ant-134 into the brain parenchyma. Intraperitoneal and intravenous injection of Ant-134 reached the hippocampus and blocked seizure-induced upregulation of miR-134. A single intraperitoneal injection of Ant-134 at 2 h after status epilepticus in mice resulted in potent suppression of spontaneous recurrent seizures, reaching a 99.5% reduction during recordings at 3 months. The duration of spontaneous seizures, when they occurred, was also reduced in Ant-134-treated mice. In vivo knockdown of LIM kinase-1 (Limk-1) increased seizure frequency in Ant-134-treated mice, implicating de-repression of Limk-1 in the antagomir mechanism. These studies indicate that systemic delivery of Ant-134 reaches the brain and produces long-lasting seizure-suppressive effects after systemic injection in mice when timed with BBB disruption and may be a clinically viable approach for this and other disease-modifying microRNA therapies.


Assuntos
Antagomirs/genética , Barreira Hematoencefálica/metabolismo , Epilepsia/genética , Epilepsia/terapia , Animais , Antagomirs/administração & dosagem , Barreira Hematoencefálica/patologia , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Inativação Gênica , Técnicas de Transferência de Genes , Predisposição Genética para Doença , Terapia Genética , Camundongos , MicroRNAs/genética , Interferência de RNA , Resultado do Tratamento
9.
Neurobiol Dis ; 144: 105048, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32800995

RESUMO

Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy. MicroRNAs are short non-coding RNA molecules which negatively regulate gene expression, exerting profound influence on target pathways and cellular processes. The presence of microRNAs in biofluids, ease of detection, resistance to degradation and functional role in epilepsy render them excellent candidate biomarkers. Here we performed the first multi-model, genome-wide profiling of plasma microRNAs during epileptogenesis and in chronic temporal lobe epilepsy animals. From video-EEG monitored rats and mice we serially sampled blood samples and identified a set of dysregulated microRNAs comprising increased miR-93-5p, miR-142-5p, miR-182-5p, miR-199a-3p and decreased miR-574-3p during one or both phases. Validation studies found miR-93-5p, miR-199a-3p and miR-574-3p were also dysregulated in plasma from patients with intractable temporal lobe epilepsy. Treatment of mice with common anti-epileptic drugs did not alter the expression levels of any of the five miRNAs identified, however administration of an anti-epileptogenic microRNA treatment prevented dysregulation of several of these miRNAs. The miRNAs were detected within the Argonuate2-RISC complex from both neurons and microglia indicating these miRNA biomarker candidates can likely be traced back to specific brain cell types. The current studies identify additional circulating microRNA biomarkers of experimental and human epilepsy which may support diagnosis of temporal lobe epilepsy via a quick, cost-effective rapid molecular-based test.


Assuntos
MicroRNA Circulante/genética , Epilepsia do Lobo Temporal/genética , Animais , Anticonvulsivantes/farmacologia , Barreira Hematoencefálica/metabolismo , MicroRNA Circulante/efeitos dos fármacos , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia do Lobo Temporal/sangue , Epilepsia do Lobo Temporal/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Masculino , Camundongos , Agonistas Muscarínicos/toxicidade , Via Perfurante , Pilocarpina/toxicidade , Ratos
10.
Proc Natl Acad Sci U S A ; 117(27): 15977-15988, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581127

RESUMO

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-ß signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-ß signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.


Assuntos
Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Animais , Antagomirs/farmacologia , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomarcadores , Modelos Animais de Doenças , Epilepsia , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteômica , Ratos , Ratos Sprague-Dawley , Convulsões/genética , Análise de Sistemas , Regulação para Cima/efeitos dos fármacos
11.
J Neurosci ; 40(25): 4798-4812, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32393534

RESUMO

Mitochondrial clusters are found at regions of high-energy demand, allowing cells to meet local metabolic requirements while maintaining neuronal homeostasis. AMP-activated protein kinase (AMPK), a key energy stress sensor, responds to increases in AMP/ATP ratio by activating multiple signaling cascades to overcome the energetic deficiency. In many neurologic conditions, the distal axon experiences energetic stress independent of the soma. Here, we used microfluidic devices to physically isolate these two neuronal structures and to investigate whether localized AMPK signaling influenced axonal mitochondrial transport. Nucleofection of primary cortical neurons, derived from E16-18 mouse embryos (both sexes), with mito-GFP allowed monitoring of the transport dynamics of mitochondria within the axon, by confocal microscopy. Pharmacological activation of AMPK at the distal axon (0.1 mm 5-aminoimidazole-4-carboxamide riboside) induced a depression of the mean frequency, velocity, and distance of retrograde mitochondrial transport in the adjacent axon. Anterograde mitochondrial transport was less sensitive to local AMPK stimulus, with the imbalance of bidirectional mitochondrial transport resulting in accumulation of mitochondria at the region of energetic stress signal. Mitochondria in the axon-rich white matter of the brain rely heavily on lactate as a substrate for ATP synthesis. Interestingly, localized inhibition of lactate uptake (10 nm AR-C155858) reduced mitochondrial transport in the adjacent axon in all parameters measured, similar to that observed by 5-aminoimidazole-4-carboxamide riboside treatment. Coaddition of compound C restored all parameters measured to baseline levels, confirming the involvement of AMPK. This study highlights a role of AMPK signaling in the depression of axonal mitochondrial mobility during localized energetic stress.SIGNIFICANCE STATEMENT As the main providers of cellular energy, the dynamic transport of mitochondria within the neuron allows for clustering at regions of high-energy demand. Here we investigate whether acute changes in energetic stress signal in the spatially isolated axon would alter mitochondrial transport in this local region. Both direct and indirect activation of AMP-activated protein kinase isolated to the distal axon induced a rapid, marked depression in local mitochondrial transport. This work highlights the ability of acute localized AMP-activated protein kinase signaling to affect mitochondrial mobility within the axon, with important implications for white matter injury, axonal growth, and axonal degeneration.


Assuntos
Adenilato Quinase/metabolismo , Transporte Axonal/fisiologia , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Mitocôndrias/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Front Cell Neurosci ; 13: 335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396055

RESUMO

It is now widely accepted that glia cells and gamma-aminobutyric acidergic (GABA) interneurons dynamically regulate synaptic transmission and neuronal activity in time and space. This paper presents a biophysical model that captures the interaction between an astrocyte cell, a GABA interneuron and pre/postsynaptic neurons. Specifically, GABA released from a GABA interneuron triggers in astrocytes the release of calcium (Ca 2+) from the endoplasmic reticulum via the inositol 1, 4, 5-trisphosphate (IP 3) pathway. This results in gliotransmission which elevates the presynaptic transmission probability rate (PR) causing weight potentiation and a gradual increase in postsynaptic neuronal firing, that eventually stabilizes. However, by capturing the complex interactions between IP 3, generated from both GABA and the 2-arachidonyl glycerol (2-AG) pathway, and PR, this paper shows that this interaction not only gives rise to an initial weight potentiation phase but also this phase is followed by postsynaptic bursting behavior. Moreover, the model will show that there is a presynaptic frequency range over which burst firing can occur. The proposed model offers a novel cellular level mechanism that may underpin both seizure-like activity and neuronal synchrony across different brain regions.

14.
Brain Stimul ; 12(6): 1390-1401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31208877

RESUMO

BACKGROUND: Up to 80% of mesial temporal lobe epilepsy patients with hippocampal sclerosis (mTLE-HS) are resistant to pharmacological treatment, often necessitating surgical resection. Deep brain stimulation (DBS) has emerged as an alternative treatment for patients who do not qualify for resective brain surgery. Brain stimulation may also exert disease-modifying effects, and noncoding microRNAs have recently been proposed to shape the gene expression landscape in epilepsy. OBJECTIVE: We compared the effect of DBS of 4 different hippocampal target regions on epileptogenesis and manifest epilepsy in a rat model of mTLE-HS. To explore mechanisms, we profiled the effect of the most effective DBS paradigm on hippocampal microRNA levels. METHODS: MTLE-HS was induced by electrical stimulation of the perforant pathway (PP) in rats. This paradigm leads to spontaneous seizures within 4 weeks. We investigated DBS of 4 targets: PP, fimbria fornix (FF) formation, dentate gyrus (DG) and ventral hippocampal commissure (VHC). We applied both high- (130 Hz) and low-frequency (5 Hz or 1 Hz) stimulation. Functional microRNAs were identified in the hippocampus immediately after VHC-DBS and after a 97-day recording period by sequencing small RNAs bound to Argonaute-2, a component of the miRNA silencing complex. RESULTS: Low frequency DBS of the VHC significantly delayed the occurrence of the first spontaneous recurrent seizure in the PPS model by ∼300%, from 19 to 56 days. No other stimulation regime altered the latency phase. Upregulation of 5 microRNAs during epileptogenesis was suppressed by VHC-stimulation. CONCLUSION: We conclude that DBS of the VHC delays epilepsy in the PPS model in rats and is associated with differential regulation of several miRNAs. Additional studies are required to determine whether VHC-regulated miRNAs serve causal roles in the anti-epileptogenic effects of this DBS model.


Assuntos
Estimulação Encefálica Profunda/métodos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/terapia , Fórnice/metabolismo , MicroRNAs/biossíntese , Animais , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Convulsões/genética , Convulsões/metabolismo , Convulsões/terapia
15.
Aging Cell ; 18(3): e12924, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793475

RESUMO

Mitochondrial dysfunction is implicated in most neurodegenerative diseases, including Alzheimer's disease (AD). We here combined experimental and computational approaches to investigate mitochondrial health and bioenergetic function in neurons from a double transgenic animal model of AD (PS2APP/B6.152H). Experiments in primary cortical neurons demonstrated that AD neurons had reduced mitochondrial respiratory capacity. Interestingly, the computational model predicted that this mitochondrial bioenergetic phenotype could not be explained by any defect in the mitochondrial respiratory chain (RC), but could be closely resembled by a simulated impairment in the mitochondrial NADH flux. Further computational analysis predicted that such an impairment would reduce levels of mitochondrial NADH, both in the resting state and following pharmacological manipulation of the RC. To validate these predictions, we utilized fluorescence lifetime imaging microscopy (FLIM) and autofluorescence imaging and confirmed that transgenic AD neurons had reduced mitochondrial NAD(P)H levels at rest, and impaired power of mitochondrial NAD(P)H production. Of note, FLIM measurements also highlighted reduced cytosolic NAD(P)H in these cells, and extracellular acidification experiments showed an impaired glycolytic flux. The impaired glycolytic flux was identified to be responsible for the observed mitochondrial hypometabolism, since bypassing glycolysis with pyruvate restored mitochondrial health. This study highlights the benefits of a systems biology approach when investigating complex, nonintuitive molecular processes such as mitochondrial bioenergetics, and indicates that primary cortical neurons from a transgenic AD model have reduced glycolytic flux, leading to reduced cytosolic and mitochondrial NAD(P)H and reduced mitochondrial respiratory capacity.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Glicólise , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Biologia de Sistemas , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Microscopia de Fluorescência
16.
Front Neurosci ; 13: 1404, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009885

RESUMO

Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions. Status epilepticus induced by unilateral intra-amygdala kainic acid in mice resulted in acute subfield-specific, bi-directional changes in hippocampal transcripts associated with exosome biosynthesis including up-regulation of endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. Increased expression of exosome components including Alix were detectable in samples obtained 2 weeks after status epilepticus and changes occurred in both the ipsilateral and contralateral hippocampus. RNA sequencing of exosome-enriched fractions prepared using two different techniques detected a rich diversity of conserved miRNAs and showed that status epilepticus selectively alters miRNA contents. We also characterized editing sites of the exosome-enriched miRNAs and found six exosome-enriched miRNAs that were adenosine-to-inosine (ADAR) edited with the majority of the editing events predicted to occur within miRNA seed regions. However, the prevalence of these editing events was not altered by status epilepticus. These studies demonstrate that status epilepticus alters the exosome pathway and its miRNA content, but not editing patterns. Further functional studies will be needed to determine if these changes have pathophysiological significance for epileptogenesis.

17.
EBioMedicine ; 38: 127-141, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30396857

RESUMO

BACKGROUND: There are no blood-based molecular biomarkers of temporal lobe epilepsy (TLE) to support clinical diagnosis. MicroRNAs are short noncoding RNAs with strong biomarker potential due to their cell-specific expression, mechanistic links to brain excitability, and stable detection in biofluids. Altered levels of circulating microRNAs have been reported in human epilepsy, but most studies collected samples from one clinical site, used a single profiling platform or conducted minimal validation. METHOD: Using a case-control design, we collected plasma samples from video-electroencephalogram-monitored adult TLE patients at epilepsy specialist centers in two countries, performed genome-wide PCR-based and RNA sequencing during the discovery phase and validated findings in a large (>250) cohort of samples that included patients with psychogenic non-epileptic seizures (PNES). FINDINGS: After profiling and validation, we identified miR-27a-3p, miR-328-3p and miR-654-3p with biomarker potential. Plasma levels of these microRNAs were also changed in a mouse model of TLE but were not different to healthy controls in PNES patients. We determined copy number of the three microRNAs in plasma and demonstrate their rapid detection using an electrochemical RNA microfluidic disk as a prototype point-of-care device. Analysis of the microRNAs within the exosome-enriched fraction provided high diagnostic accuracy while Argonaute-bound miR-328-3p selectively increased in patient samples after seizures. In situ hybridization localized miR-27a-3p and miR-328-3p within neurons in human brain and bioinformatics predicted targets linked to growth factor signaling and apoptosis. INTERPRETATION: This study demonstrates the biomarker potential of circulating microRNAs for epilepsy diagnosis and mechanistic links to underlying pathomechanisms.


Assuntos
Biomarcadores , MicroRNA Circulante , Epilepsia do Lobo Temporal/genética , MicroRNAs/genética , Animais , Estudos de Casos e Controles , Biologia Computacional/métodos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/sangue , Epilepsia do Lobo Temporal/diagnóstico , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Transcriptoma
18.
Cell Death Differ ; 25(3): 542-572, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229998

RESUMO

Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Humanos
19.
PLoS One ; 12(11): e0188343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145487

RESUMO

Cell death induced by excessive glutamate receptor overactivation, excitotoxicity, has been implicated in several acute and chronic neurological disorders. While numerous studies have demonstrated the contribution of biochemically and genetically activated cell death pathways in excitotoxic injury, the factors mediating passive, excitotoxic necrosis are less thoroughly investigated. To address this question, we developed a high content screening (HCS) based assay to collect high volumes of quantitative cellular imaging data and elucidated the effects of intrinsic and external factors on excitotoxic necrosis and apoptosis. The analysis workflow consisted of robust nuclei segmentation, tracking and a classification algorithm, which enabled automated analysis of large amounts of data to identify and quantify viable, apoptotic and necrotic neuronal populations. We show that mouse cerebellar granule neurons plated at low or high density underwent significantly increased necrosis compared to neurons seeded at medium density. Increased extracellular Ca2+ sensitized neurons to glutamate-induced excitotoxicity, but surprisingly potentiated cell death mainly through apoptosis. We also demonstrate that inhibition of various cell death signaling pathways (including inhibition of calpain, PARP and AMPK activation) primarily reduced excitotoxic apoptosis. Excitotoxic necrosis instead increased with low extracellular glucose availability. Our study is the first of its kind to establish and implement a HCS based assay to investigate the contribution of external and intrinsic factors to excitotoxic apoptosis and necrosis.


Assuntos
Apoptose , Sobrevivência Celular , Cerebelo/citologia , Neurônios/citologia , Algoritmos , Animais , Cálcio/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , Camundongos , Necrose , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
20.
Sci Rep ; 7(1): 3328, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607431

RESUMO

There is a need for diagnostic biomarkers of epilepsy and status epilepticus to support clinical examination, electroencephalography and neuroimaging. Extracellular microRNAs may be potentially ideal biomarkers since some are expressed uniquely within specific brain regions and cell types. Cerebrospinal fluid offers a source of microRNA biomarkers with the advantage of being in close contact with the target tissue and sites of pathology. Here we profiled microRNA levels in cerebrospinal fluid from patients with temporal lobe epilepsy or status epilepticus, and compared findings to matched controls. Differential expression of 20 microRNAs was detected between patient groups and controls. A validation phase included an expanded cohort and samples from patients with other neurological diseases. This identified lower levels of miR-19b in temporal lobe epilepsy compared to controls, status epilepticus and other neurological diseases. Levels of miR-451a were higher in status epilepticus compared to other groups whereas miR-21-5p differed in status epilepticus compared to temporal lobe epilepsy but not to other neurological diseases. Targets of these microRNAs include proteins regulating neuronal death, tissue remodelling, gliosis and inflammation. The present study indicates cerebrospinal fluid contains microRNAs that can support differential diagnosis of temporal lobe epilepsy and status epilepticus from other neurological and non-neurological diseases.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Epilepsia do Lobo Temporal/líquido cefalorraquidiano , Epilepsia do Lobo Temporal/genética , MicroRNAs/líquido cefalorraquidiano , Estado Epiléptico/líquido cefalorraquidiano , Estado Epiléptico/genética , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Epilepsia do Lobo Temporal/sangue , Exossomos/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Modelos Logísticos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Análise de Componente Principal , Transporte de RNA , Curva ROC , Reprodutibilidade dos Testes , Estado Epiléptico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...